MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 1.7380 Steel

6065 aluminum belongs to the aluminum alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
19 to 20
Fatigue Strength, MPa 96 to 110
200 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 190 to 230
330 to 350
Tensile Strength: Ultimate (UTS), MPa 310 to 400
540 to 550
Tensile Strength: Yield (Proof), MPa 270 to 380
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.8
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.4
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1200
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
230 to 280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
19 to 20
Strength to Weight: Bending, points 36 to 43
19
Thermal Diffusivity, mm2/s 67
11
Thermal Shock Resistance, points 14 to 18
15 to 16

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0 to 0.15
2.0 to 2.5
Copper (Cu), % 0.15 to 0.4
0 to 0.3
Iron (Fe), % 0 to 0.7
94.6 to 96.6
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0