MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 1.8201 Steel

6065 aluminum belongs to the aluminum alloys classification, while EN 1.8201 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
20
Fatigue Strength, MPa 96 to 110
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 190 to 230
390
Tensile Strength: Ultimate (UTS), MPa 310 to 400
630
Tensile Strength: Yield (Proof), MPa 270 to 380
450

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
450
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 590
1450
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.4
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1200
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
22
Strength to Weight: Bending, points 36 to 43
20
Thermal Diffusivity, mm2/s 67
11
Thermal Shock Resistance, points 14 to 18
18

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0 to 0.030
Bismuth (Bi), % 0.5 to 1.5
0
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.15
1.9 to 2.6
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
93.6 to 96.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0