MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 2.4654 Nickel

6065 aluminum belongs to the aluminum alloys classification, while EN 2.4654 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 2.4654 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
17
Fatigue Strength, MPa 96 to 110
460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 230
770
Tensile Strength: Ultimate (UTS), MPa 310 to 400
1250
Tensile Strength: Yield (Proof), MPa 270 to 380
850

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 590
1330
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 170
13
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
75
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
190
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
1810
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 31 to 40
42
Strength to Weight: Bending, points 36 to 43
31
Thermal Diffusivity, mm2/s 67
3.3
Thermal Shock Resistance, points 14 to 18
37

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
1.2 to 1.6
Bismuth (Bi), % 0.5 to 1.5
0
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.15
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 2.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
50.6 to 62.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.4 to 0.8
0 to 0.15
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
2.8 to 3.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0.020 to 0.080
Residuals, % 0 to 0.15
0