MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 2.4878 Nickel

6065 aluminum belongs to the aluminum alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
13 to 17
Fatigue Strength, MPa 96 to 110
400 to 410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
78
Shear Strength, MPa 190 to 230
750 to 760
Tensile Strength: Ultimate (UTS), MPa 310 to 400
1210 to 1250
Tensile Strength: Yield (Proof), MPa 270 to 380
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1030
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 590
1320
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
80
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1200
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
1370 to 1540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
41 to 42
Strength to Weight: Bending, points 36 to 43
31
Thermal Diffusivity, mm2/s 67
2.8
Thermal Shock Resistance, points 14 to 18
37 to 39

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
1.2 to 1.6
Bismuth (Bi), % 0.5 to 1.5
0
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0
0.030 to 0.070
Chromium (Cr), % 0 to 0.15
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0.15 to 0.4
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
2.8 to 3.2
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0.030 to 0.070
Residuals, % 0 to 0.15
0

Comparable Variants