MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. EN 2.4951 Nickel

6065 aluminum belongs to the aluminum alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
34
Fatigue Strength, MPa 96 to 110
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 230
500
Tensile Strength: Ultimate (UTS), MPa 310 to 400
750
Tensile Strength: Yield (Proof), MPa 270 to 380
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 590
1310
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.4
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
200
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 31 to 40
25
Strength to Weight: Bending, points 36 to 43
22
Thermal Diffusivity, mm2/s 67
3.1
Thermal Shock Resistance, points 14 to 18
23

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0 to 0.3
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.15
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0.15 to 0.4
0 to 0.5
Iron (Fe), % 0 to 0.7
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0.2 to 0.6
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0