MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. SAE-AISI 51B60 Steel

6065 aluminum belongs to the aluminum alloys classification, while SAE-AISI 51B60 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is SAE-AISI 51B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
12 to 21
Fatigue Strength, MPa 96 to 110
280 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190 to 230
390 to 420
Tensile Strength: Ultimate (UTS), MPa 310 to 400
660
Tensile Strength: Yield (Proof), MPa 270 to 380
400 to 550

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1200
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
73 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
420 to 800
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
23
Strength to Weight: Bending, points 36 to 43
22
Thermal Diffusivity, mm2/s 67
12
Thermal Shock Resistance, points 14 to 18
19

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.56 to 0.64
Chromium (Cr), % 0 to 0.15
0.7 to 0.9
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
97 to 97.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.4 to 0.8
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0