MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. C70400 Copper-nickel

6065 aluminum belongs to the aluminum alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 310 to 400
300 to 310
Tensile Strength: Yield (Proof), MPa 270 to 380
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 590
1060
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
64
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
14
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.4
3.0
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1200
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
38 to 220
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 31 to 40
9.3 to 9.8
Strength to Weight: Bending, points 36 to 43
11 to 12
Thermal Diffusivity, mm2/s 67
18
Thermal Shock Resistance, points 14 to 18
10 to 11

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0.15 to 0.4
89.8 to 93.6
Iron (Fe), % 0 to 0.7
1.3 to 1.7
Lead (Pb), % 0 to 0.050
0 to 0.050
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Silicon (Si), % 0.4 to 0.8
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5