MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. C75700 Nickel Silver

6065 aluminum belongs to the aluminum alloys classification, while C75700 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is C75700 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.5 to 11
3.2 to 22
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
45
Shear Strength, MPa 190 to 230
350 to 370
Tensile Strength: Ultimate (UTS), MPa 310 to 400
590 to 610
Tensile Strength: Yield (Proof), MPa 270 to 380
470 to 580

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 590
990
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
40
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.4
3.6
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
930 to 1410
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 31 to 40
19 to 20
Strength to Weight: Bending, points 36 to 43
19
Thermal Diffusivity, mm2/s 67
12
Thermal Shock Resistance, points 14 to 18
22 to 23

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0.15 to 0.4
63.5 to 66.5
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.050
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Nickel (Ni), % 0
11 to 13
Silicon (Si), % 0.4 to 0.8
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
19.2 to 25.5
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5