MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. C86500 Bronze

6065 aluminum belongs to the aluminum alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.5 to 11
25
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 310 to 400
530
Tensile Strength: Yield (Proof), MPa 270 to 380
190

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 640
880
Melting Onset (Solidus), °C 590
860
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 170
86
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
22
Electrical Conductivity: Equal Weight (Specific), % IACS 140
25

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.4
2.8
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
180
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 49
20
Strength to Weight: Axial, points 31 to 40
19
Strength to Weight: Bending, points 36 to 43
18
Thermal Diffusivity, mm2/s 67
28
Thermal Shock Resistance, points 14 to 18
17

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0.5 to 1.5
Bismuth (Bi), % 0.5 to 1.5
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0.15 to 0.4
55 to 60
Iron (Fe), % 0 to 0.7
0.4 to 2.0
Lead (Pb), % 0 to 0.050
0 to 0.4
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.1 to 1.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0.4 to 0.8
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
36 to 42
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 1.0