MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. N06025 Nickel

6065 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
32
Fatigue Strength, MPa 96 to 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 230
500
Tensile Strength: Ultimate (UTS), MPa 310 to 400
760
Tensile Strength: Yield (Proof), MPa 270 to 380
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 590
1300
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.4
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
190
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 31 to 40
26
Strength to Weight: Bending, points 36 to 43
22
Thermal Diffusivity, mm2/s 67
2.9
Thermal Shock Resistance, points 14 to 18
21

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
1.8 to 2.4
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0 to 0.15
24 to 26
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
8.0 to 11
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.25
0.010 to 0.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0