MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. S20910 Stainless Steel

6065 aluminum belongs to the aluminum alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
14 to 39
Fatigue Strength, MPa 96 to 110
310 to 460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 190 to 230
500 to 570
Tensile Strength: Ultimate (UTS), MPa 310 to 400
780 to 940
Tensile Strength: Yield (Proof), MPa 270 to 380
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1080
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
13
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
4.8
Embodied Energy, MJ/kg 150
68
Embodied Water, L/kg 1200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
460 to 1640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 40
28 to 33
Strength to Weight: Bending, points 36 to 43
24 to 27
Thermal Diffusivity, mm2/s 67
3.6
Thermal Shock Resistance, points 14 to 18
17 to 21

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.15
20.5 to 23.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
52.1 to 62.1
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0