MakeItFrom.com
Menu (ESC)

6065 Aluminum vs. S45000 Stainless Steel

6065 aluminum belongs to the aluminum alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6065 aluminum and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
6.8 to 14
Fatigue Strength, MPa 96 to 110
330 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 230
590 to 830
Tensile Strength: Ultimate (UTS), MPa 310 to 400
980 to 1410
Tensile Strength: Yield (Proof), MPa 270 to 380
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
840
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 34
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 540 to 1040
850 to 4400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 40
35 to 50
Strength to Weight: Bending, points 36 to 43
28 to 36
Thermal Diffusivity, mm2/s 67
4.5
Thermal Shock Resistance, points 14 to 18
33 to 47

Alloy Composition

Aluminum (Al), % 94.4 to 98.2
0
Bismuth (Bi), % 0.5 to 1.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.15
14 to 16
Copper (Cu), % 0.15 to 0.4
1.3 to 1.8
Iron (Fe), % 0 to 0.7
72.1 to 79.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0