MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. AISI 347LN Stainless Steel

6066 aluminum belongs to the aluminum alloys classification, while AISI 347LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is AISI 347LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 7.8 to 17
40
Fatigue Strength, MPa 94 to 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 95 to 240
400
Tensile Strength: Ultimate (UTS), MPa 160 to 400
590
Tensile Strength: Yield (Proof), MPa 93 to 360
230

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
190
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 16 to 39
21
Strength to Weight: Bending, points 23 to 43
20
Thermal Diffusivity, mm2/s 61
4.1
Thermal Shock Resistance, points 6.9 to 17
13

Alloy Composition

Aluminum (Al), % 93 to 97
0
Carbon (C), % 0
0.0050 to 0.020
Chromium (Cr), % 0 to 0.4
17 to 19
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 0.5
64.3 to 73.7
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0
0.060 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.9 to 1.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0