MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. AISI 418 Stainless Steel

6066 aluminum belongs to the aluminum alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 7.8 to 17
17
Fatigue Strength, MPa 94 to 130
520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 95 to 240
680
Tensile Strength: Ultimate (UTS), MPa 160 to 400
1100
Tensile Strength: Yield (Proof), MPa 93 to 360
850

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 170
770
Melting Completion (Liquidus), °C 650
1500
Melting Onset (Solidus), °C 560
1460
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
170
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
1830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 16 to 39
38
Strength to Weight: Bending, points 23 to 43
29
Thermal Diffusivity, mm2/s 61
6.7
Thermal Shock Resistance, points 6.9 to 17
40

Alloy Composition

Aluminum (Al), % 93 to 97
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0 to 0.4
12 to 14
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 0.5
78.5 to 83.6
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.9 to 1.8
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0