MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. EN 1.3518 Steel

6066 aluminum belongs to the aluminum alloys classification, while EN 1.3518 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is EN 1.3518 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 160 to 400
630

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1160
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 16 to 39
23
Strength to Weight: Bending, points 23 to 43
21
Thermal Diffusivity, mm2/s 61
12
Thermal Shock Resistance, points 6.9 to 17
19

Alloy Composition

Aluminum (Al), % 93 to 97
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.4
0.9 to 1.2
Copper (Cu), % 0.7 to 1.2
0 to 0.3
Iron (Fe), % 0 to 0.5
96.3 to 97.8
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0.9 to 1.2
Molybdenum (Mo), % 0
0 to 0.1
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.9 to 1.8
0.45 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0