MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. EN 2.4654 Nickel

6066 aluminum belongs to the aluminum alloys classification, while EN 2.4654 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is EN 2.4654 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 7.8 to 17
17
Fatigue Strength, MPa 94 to 130
460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 95 to 240
770
Tensile Strength: Ultimate (UTS), MPa 160 to 400
1250
Tensile Strength: Yield (Proof), MPa 93 to 360
850

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
190
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
1810
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 16 to 39
42
Strength to Weight: Bending, points 23 to 43
31
Thermal Diffusivity, mm2/s 61
3.3
Thermal Shock Resistance, points 6.9 to 17
37

Alloy Composition

Aluminum (Al), % 93 to 97
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.4
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0.7 to 1.2
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 2.0
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
50.6 to 62.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.9 to 1.8
0 to 0.15
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
2.8 to 3.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0.020 to 0.080
Residuals, % 0 to 0.15
0