MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. EN 2.4951 Nickel

6066 aluminum belongs to the aluminum alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 7.8 to 17
34
Fatigue Strength, MPa 94 to 130
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 95 to 240
500
Tensile Strength: Ultimate (UTS), MPa 160 to 400
750
Tensile Strength: Yield (Proof), MPa 93 to 360
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 560
1310
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.3
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1160
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
200
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 16 to 39
25
Strength to Weight: Bending, points 23 to 43
22
Thermal Diffusivity, mm2/s 61
3.1
Thermal Shock Resistance, points 6.9 to 17
23

Alloy Composition

Aluminum (Al), % 93 to 97
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.4
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0.7 to 1.2
0 to 0.5
Iron (Fe), % 0 to 0.5
0 to 5.0
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0 to 1.0
Nickel (Ni), % 0
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.9 to 1.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.2 to 0.6
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0