MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. EN-MC65120 Magnesium

6066 aluminum belongs to the aluminum alloys classification, while EN-MC65120 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is EN-MC65120 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
45
Elongation at Break, % 7.8 to 17
3.1
Fatigue Strength, MPa 94 to 130
80
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 95 to 240
92
Tensile Strength: Ultimate (UTS), MPa 160 to 400
160
Tensile Strength: Yield (Proof), MPa 93 to 360
110

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 560
520
Specific Heat Capacity, J/kg-K 890
970
Thermal Conductivity, W/m-K 150
100
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
25
Electrical Conductivity: Equal Weight (Specific), % IACS 130
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
1.9
Embodied Carbon, kg CO2/kg material 8.3
25
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1160
930

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
4.4
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
62
Strength to Weight: Axial, points 16 to 39
23
Strength to Weight: Bending, points 23 to 43
34
Thermal Diffusivity, mm2/s 61
56
Thermal Shock Resistance, points 6.9 to 17
9.8

Alloy Composition

Aluminum (Al), % 93 to 97
0
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0.7 to 1.2
0 to 0.030
Iron (Fe), % 0 to 0.5
0 to 0.010
Magnesium (Mg), % 0.8 to 1.4
91.8 to 95.1
Manganese (Mn), % 0.6 to 1.1
0 to 0.15
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0.9 to 1.8
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Unspecified Rare Earths, % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.25
2.0 to 3.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.010