MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. SAE-AISI 9254 Steel

6066 aluminum belongs to the aluminum alloys classification, while SAE-AISI 9254 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is SAE-AISI 9254 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 7.8 to 17
20
Fatigue Strength, MPa 94 to 130
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 95 to 240
410
Tensile Strength: Ultimate (UTS), MPa 160 to 400
660
Tensile Strength: Yield (Proof), MPa 93 to 360
410

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
46
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1160
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
110
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 16 to 39
24
Strength to Weight: Bending, points 23 to 43
22
Thermal Diffusivity, mm2/s 61
12
Thermal Shock Resistance, points 6.9 to 17
20

Alloy Composition

Aluminum (Al), % 93 to 97
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0 to 0.4
0.6 to 0.8
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 0.5
96.1 to 97.1
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.9 to 1.8
1.2 to 1.6
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0