MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. C61800 Bronze

6066 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 7.8 to 17
26
Fatigue Strength, MPa 94 to 130
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 95 to 240
310
Tensile Strength: Ultimate (UTS), MPa 160 to 400
740
Tensile Strength: Yield (Proof), MPa 93 to 360
310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 560
1040
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 150
64
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
13
Electrical Conductivity: Equal Weight (Specific), % IACS 130
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.3
3.1
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
150
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 16 to 39
25
Strength to Weight: Bending, points 23 to 43
22
Thermal Diffusivity, mm2/s 61
18
Thermal Shock Resistance, points 6.9 to 17
26

Alloy Composition

Aluminum (Al), % 93 to 97
8.5 to 11
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0.7 to 1.2
86.9 to 91
Iron (Fe), % 0 to 0.5
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0
Silicon (Si), % 0.9 to 1.8
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0 to 0.020
Residuals, % 0
0 to 0.5