MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. C95500 Bronze

6066 aluminum belongs to the aluminum alloys classification, while C95500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 7.8 to 17
8.4 to 10
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 160 to 400
700 to 850
Tensile Strength: Yield (Proof), MPa 93 to 360
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 560
1040
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 150
42
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
420 to 950
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 49
20
Strength to Weight: Axial, points 16 to 39
24 to 29
Strength to Weight: Bending, points 23 to 43
21 to 24
Thermal Diffusivity, mm2/s 61
11
Thermal Shock Resistance, points 6.9 to 17
24 to 29

Alloy Composition

Aluminum (Al), % 93 to 97
10 to 11.5
Chromium (Cr), % 0 to 0.4
0
Copper (Cu), % 0.7 to 1.2
78 to 84
Iron (Fe), % 0 to 0.5
3.0 to 5.0
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0 to 3.5
Nickel (Ni), % 0
3.0 to 5.5
Silicon (Si), % 0.9 to 1.8
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5