MakeItFrom.com
Menu (ESC)

6066 Aluminum vs. S32615 Stainless Steel

6066 aluminum belongs to the aluminum alloys classification, while S32615 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066 aluminum and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 7.8 to 17
28
Fatigue Strength, MPa 94 to 130
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 95 to 240
400
Tensile Strength: Ultimate (UTS), MPa 160 to 400
620
Tensile Strength: Yield (Proof), MPa 93 to 360
250

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 560
1310
Specific Heat Capacity, J/kg-K 890
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1160
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 52
140
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 920
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 16 to 39
23
Strength to Weight: Bending, points 23 to 43
21
Thermal Shock Resistance, points 6.9 to 17
15

Alloy Composition

Aluminum (Al), % 93 to 97
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.4
16.5 to 19.5
Copper (Cu), % 0.7 to 1.2
1.5 to 2.5
Iron (Fe), % 0 to 0.5
46.4 to 57.9
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.9 to 1.8
4.8 to 6.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0