MakeItFrom.com
Menu (ESC)

6066-O Aluminum vs. Annealed S45000 Stainless Steel

6066-O aluminum belongs to the aluminum alloys classification, while annealed S45000 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6066-O aluminum and the bottom bar is annealed S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 43
280
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 17
11
Fatigue Strength, MPa 97
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 95
590
Tensile Strength: Ultimate (UTS), MPa 160
980
Tensile Strength: Yield (Proof), MPa 93
730

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1160
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
100
Resilience: Unit (Modulus of Resilience), kJ/m3 61
1380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 16
35
Strength to Weight: Bending, points 23
28
Thermal Diffusivity, mm2/s 61
4.5
Thermal Shock Resistance, points 6.9
33

Alloy Composition

Aluminum (Al), % 93 to 97
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.4
14 to 16
Copper (Cu), % 0.7 to 1.2
1.3 to 1.8
Iron (Fe), % 0 to 0.5
72.1 to 79.3
Magnesium (Mg), % 0.8 to 1.4
0
Manganese (Mn), % 0.6 to 1.1
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.9 to 1.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0