MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. AWS ER110S-1

6070 aluminum belongs to the aluminum alloys classification, while AWS ER110S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.6
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 370 to 380
870
Tensile Strength: Yield (Proof), MPa 350
740

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
47
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1170
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
140
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 38
31
Strength to Weight: Bending, points 42 to 43
26
Thermal Diffusivity, mm2/s 65
13
Thermal Shock Resistance, points 16 to 17
26

Alloy Composition

Aluminum (Al), % 94.6 to 98
0 to 0.1
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.1
0 to 0.5
Copper (Cu), % 0.15 to 0.4
0 to 0.25
Iron (Fe), % 0 to 0.5
92.8 to 96.3
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
1.4 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.9 to 2.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.0 to 1.7
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5