MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. EN 1.8869 Steel

6070 aluminum belongs to the aluminum alloys classification, while EN 1.8869 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is EN 1.8869 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.6
25
Fatigue Strength, MPa 95 to 130
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220 to 240
350
Tensile Strength: Ultimate (UTS), MPa 370 to 380
540
Tensile Strength: Yield (Proof), MPa 350
360

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
48
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1170
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
120
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 38
19
Strength to Weight: Bending, points 42 to 43
19
Thermal Diffusivity, mm2/s 65
13
Thermal Shock Resistance, points 16 to 17
16

Alloy Composition

Aluminum (Al), % 94.6 to 98
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0.15 to 0.4
0 to 0.3
Iron (Fe), % 0 to 0.5
96.4 to 100
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.0 to 1.7
0 to 0.4
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.15
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 0.15
0