MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. Nickel 333

6070 aluminum belongs to the aluminum alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 5.6 to 8.6
34
Fatigue Strength, MPa 95 to 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 220 to 240
420
Tensile Strength: Ultimate (UTS), MPa 370 to 380
630
Tensile Strength: Yield (Proof), MPa 350
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1170
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
170
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 38
21
Strength to Weight: Bending, points 42 to 43
19
Thermal Diffusivity, mm2/s 65
2.9
Thermal Shock Resistance, points 16 to 17
16

Alloy Composition

Aluminum (Al), % 94.6 to 98
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.5
9.3 to 24.5
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 1.7
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0