MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. C66200 Brass

6070 aluminum belongs to the aluminum alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 5.6 to 8.6
8.0 to 15
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 220 to 240
270 to 300
Tensile Strength: Ultimate (UTS), MPa 370 to 380
450 to 520
Tensile Strength: Yield (Proof), MPa 350
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 650
1070
Melting Onset (Solidus), °C 570
1030
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
35
Electrical Conductivity: Equal Weight (Specific), % IACS 140
36

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
760 to 1030
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 38
14 to 17
Strength to Weight: Bending, points 42 to 43
15 to 16
Thermal Diffusivity, mm2/s 65
45
Thermal Shock Resistance, points 16 to 17
16 to 18

Alloy Composition

Aluminum (Al), % 94.6 to 98
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
86.6 to 91
Iron (Fe), % 0 to 0.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0
Nickel (Ni), % 0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Silicon (Si), % 1.0 to 1.7
0
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
6.5 to 12.9
Residuals, % 0
0 to 0.5