MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. C67500 Bronze

6070 aluminum belongs to the aluminum alloys classification, while C67500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 5.6 to 8.6
14 to 33
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
40
Shear Strength, MPa 220 to 240
270 to 350
Tensile Strength: Ultimate (UTS), MPa 370 to 380
430 to 580
Tensile Strength: Yield (Proof), MPa 350
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 160
120
Melting Completion (Liquidus), °C 650
890
Melting Onset (Solidus), °C 570
870
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
110
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
24
Electrical Conductivity: Equal Weight (Specific), % IACS 140
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 38
15 to 20
Strength to Weight: Bending, points 42 to 43
16 to 19
Thermal Diffusivity, mm2/s 65
34
Thermal Shock Resistance, points 16 to 17
14 to 19

Alloy Composition

Aluminum (Al), % 94.6 to 98
0 to 0.25
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
57 to 60
Iron (Fe), % 0 to 0.5
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0.050 to 0.5
Silicon (Si), % 1.0 to 1.7
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
35.1 to 41.7
Residuals, % 0
0 to 0.5