MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. C79600 Nickel Silver

6070 aluminum belongs to the aluminum alloys classification, while C79600 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is C79600 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 5.6 to 8.6
15
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
43
Shear Strength, MPa 220 to 240
290
Tensile Strength: Ultimate (UTS), MPa 370 to 380
480
Tensile Strength: Yield (Proof), MPa 350
300

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 160
130
Melting Completion (Liquidus), °C 650
930
Melting Onset (Solidus), °C 570
880
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
36
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
63
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
400
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 42 to 43
17
Thermal Diffusivity, mm2/s 65
12
Thermal Shock Resistance, points 16 to 17
15

Alloy Composition

Aluminum (Al), % 94.6 to 98
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
43.5 to 46.5
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0
0.8 to 1.2
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
1.5 to 2.5
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 1.0 to 1.7
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
38.3 to 45.2
Residuals, % 0
0 to 0.5