MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. N06219 Nickel

6070 aluminum belongs to the aluminum alloys classification, while N06219 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.6 to 8.6
48
Fatigue Strength, MPa 95 to 130
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 220 to 240
520
Tensile Strength: Ultimate (UTS), MPa 370 to 380
730
Tensile Strength: Yield (Proof), MPa 350
300

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 160
10
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
11
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
280
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 42 to 43
21
Thermal Diffusivity, mm2/s 65
2.7
Thermal Shock Resistance, points 16 to 17
21

Alloy Composition

Aluminum (Al), % 94.6 to 98
0 to 0.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.15 to 0.4
0 to 0.5
Iron (Fe), % 0 to 0.5
2.0 to 4.0
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0
60.8 to 72.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.0 to 1.7
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0