MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. S30601 Stainless Steel

6070 aluminum belongs to the aluminum alloys classification, while S30601 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is S30601 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.6
37
Fatigue Strength, MPa 95 to 130
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 220 to 240
450
Tensile Strength: Ultimate (UTS), MPa 370 to 380
660
Tensile Strength: Yield (Proof), MPa 350
300

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 160
950
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 570
1310
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
200
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 42 to 43
22
Thermal Shock Resistance, points 16 to 17
16

Alloy Composition

Aluminum (Al), % 94.6 to 98
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
17 to 18
Copper (Cu), % 0.15 to 0.4
0 to 0.35
Iron (Fe), % 0 to 0.5
56.9 to 60.5
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
17 to 18
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 1.7
5.0 to 5.6
Sulfur (S), % 0
0 to 0.013
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0