MakeItFrom.com
Menu (ESC)

6081 Aluminum vs. 354.0 Aluminum

Both 6081 aluminum and 354.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6081 aluminum and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 9.0
2.4 to 3.0
Fatigue Strength, MPa 110
92 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 310
360 to 380
Tensile Strength: Yield (Proof), MPa 270
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
530
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 610
550
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 180
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
32
Electrical Conductivity: Equal Weight (Specific), % IACS 160
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 540
540 to 670
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
52
Strength to Weight: Axial, points 32
37 to 39
Strength to Weight: Bending, points 37
42 to 44
Thermal Diffusivity, mm2/s 74
52
Thermal Shock Resistance, points 14
17 to 18

Alloy Composition

Aluminum (Al), % 96.3 to 98.6
87.3 to 89.4
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
1.6 to 2.0
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 0.6 to 1.0
0.4 to 0.6
Manganese (Mn), % 0.1 to 0.45
0 to 0.1
Silicon (Si), % 0.7 to 1.1
8.6 to 9.4
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.15