MakeItFrom.com
Menu (ESC)

6081 Aluminum vs. AISI 317L Stainless Steel

6081 aluminum belongs to the aluminum alloys classification, while AISI 317L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6081 aluminum and the bottom bar is AISI 317L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0
44
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
82
Shear Strength, MPa 180
380
Tensile Strength: Ultimate (UTS), MPa 310
550
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 160
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.3
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
200
Resilience: Unit (Modulus of Resilience), kJ/m3 540
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 37
19
Thermal Diffusivity, mm2/s 74
3.8
Thermal Shock Resistance, points 14
12

Alloy Composition

Aluminum (Al), % 96.3 to 98.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
18 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
58 to 68
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0.1 to 0.45
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
11 to 15
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.7 to 1.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0