MakeItFrom.com
Menu (ESC)

6081 Aluminum vs. AWS E80C-W2

6081 aluminum belongs to the aluminum alloys classification, while AWS E80C-W2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6081 aluminum and the bottom bar is AWS E80C-W2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0
25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 310
620
Tensile Strength: Yield (Proof), MPa 270
540

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
150
Resilience: Unit (Modulus of Resilience), kJ/m3 540
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
22
Strength to Weight: Bending, points 37
21
Thermal Diffusivity, mm2/s 74
10
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 96.3 to 98.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
0.45 to 0.7
Copper (Cu), % 0 to 0.1
0.3 to 0.75
Iron (Fe), % 0 to 0.5
94.9 to 98
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0.1 to 0.45
0.5 to 1.3
Nickel (Ni), % 0
0.4 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.7 to 1.1
0.35 to 0.8
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5