MakeItFrom.com
Menu (ESC)

6081 Aluminum vs. EN 1.7239 Steel

6081 aluminum belongs to the aluminum alloys classification, while EN 1.7239 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6081 aluminum and the bottom bar is EN 1.7239 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 310
660 to 1990

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
50

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
23 to 71
Strength to Weight: Bending, points 37
21 to 45
Thermal Diffusivity, mm2/s 74
12
Thermal Shock Resistance, points 14
19 to 59

Alloy Composition

Aluminum (Al), % 96.3 to 98.6
0
Carbon (C), % 0
0.56 to 0.64
Chromium (Cr), % 0 to 0.1
0.7 to 1.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
96.8 to 98
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0.1 to 0.45
0.7 to 1.0
Molybdenum (Mo), % 0
0.060 to 0.15
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.7 to 1.1
0 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0