MakeItFrom.com
Menu (ESC)

6081 Aluminum vs. SAE-AISI 8720 Steel

6081 aluminum belongs to the aluminum alloys classification, while SAE-AISI 8720 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6081 aluminum and the bottom bar is SAE-AISI 8720 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0
25
Fatigue Strength, MPa 110
240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 180
320
Tensile Strength: Ultimate (UTS), MPa 310
500
Tensile Strength: Yield (Proof), MPa 270
330

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
39
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
110
Resilience: Unit (Modulus of Resilience), kJ/m3 540
290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 37
18
Thermal Diffusivity, mm2/s 74
10
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 96.3 to 98.6
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0 to 0.1
0.4 to 0.6
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
96.8 to 98
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0.1 to 0.45
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.7 to 1.1
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0