MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. A201.0 Aluminum

Both 6082 aluminum and A201.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 6.3 to 18
4.7
Fatigue Strength, MPa 55 to 130
97
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 140 to 340
480
Tensile Strength: Yield (Proof), MPa 85 to 320
420

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 580
570
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
30
Electrical Conductivity: Equal Weight (Specific), % IACS 140
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
22
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
1250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 14 to 35
44
Strength to Weight: Bending, points 21 to 40
45
Thermal Diffusivity, mm2/s 67
46
Thermal Shock Resistance, points 6.0 to 15
21

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
93.7 to 95.5
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.1
Magnesium (Mg), % 0.6 to 1.2
0.15 to 0.35
Manganese (Mn), % 0.4 to 1.0
0.2 to 0.4
Silicon (Si), % 0.7 to 1.3
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.15 to 0.35
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.1