MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. ASTM A204 Steel

6082 aluminum belongs to the aluminum alloys classification, while ASTM A204 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is ASTM A204 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 95
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 18
18 to 22
Fatigue Strength, MPa 55 to 130
200 to 220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 84 to 220
330 to 360
Tensile Strength: Ultimate (UTS), MPa 140 to 340
520 to 590
Tensile Strength: Yield (Proof), MPa 85 to 320
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 580
1420 to 1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1170
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
90 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
220 to 290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 35
18 to 21
Strength to Weight: Bending, points 21 to 40
18 to 20
Thermal Diffusivity, mm2/s 67
14
Thermal Shock Resistance, points 6.0 to 15
15 to 17