MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. AWS E317

6082 aluminum belongs to the aluminum alloys classification, while AWS E317 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is AWS E317.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 6.3 to 18
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 140 to 340
620

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.3
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1170
170

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 35
22
Strength to Weight: Bending, points 21 to 40
20
Thermal Diffusivity, mm2/s 67
3.9
Thermal Shock Resistance, points 6.0 to 15
16

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
18 to 21
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.5
56.6 to 66.5
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
12 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0