MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. AWS E90C-B9

6082 aluminum belongs to the aluminum alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 18
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 140 to 340
710
Tensile Strength: Yield (Proof), MPa 85 to 320
460

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
25
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1170
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
110
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 35
25
Strength to Weight: Bending, points 21 to 40
23
Thermal Diffusivity, mm2/s 67
6.9
Thermal Shock Resistance, points 6.0 to 15
20

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0 to 0.040
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0 to 0.25
8.0 to 10.5
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.5
84.4 to 90.9
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.7 to 1.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5