MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. EN 1.4634 Stainless Steel

6082 aluminum belongs to the aluminum alloys classification, while EN 1.4634 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is EN 1.4634 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 6.3 to 18
21
Fatigue Strength, MPa 55 to 130
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 84 to 220
340
Tensile Strength: Ultimate (UTS), MPa 140 to 340
540
Tensile Strength: Yield (Proof), MPa 85 to 320
280

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
21
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1170
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
93
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 14 to 35
20
Strength to Weight: Bending, points 21 to 40
19
Thermal Diffusivity, mm2/s 67
5.8
Thermal Shock Resistance, points 6.0 to 15
19

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0.2 to 1.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
17.5 to 18.5
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.5
74.9 to 81.8
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.3 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.7 to 1.3
0.2 to 1.5
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0