MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. EN 1.7216 Steel

6082 aluminum belongs to the aluminum alloys classification, while EN 1.7216 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is EN 1.7216 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 95
200 to 280
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 18
12 to 23
Fatigue Strength, MPa 55 to 130
290 to 440
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 84 to 220
410 to 560
Tensile Strength: Ultimate (UTS), MPa 140 to 340
650 to 930
Tensile Strength: Yield (Proof), MPa 85 to 320
400 to 690

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
46
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1170
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
430 to 1280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 35
23 to 33
Strength to Weight: Bending, points 21 to 40
21 to 27
Thermal Diffusivity, mm2/s 67
12
Thermal Shock Resistance, points 6.0 to 15
19 to 27

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0 to 0.25
0.8 to 1.2
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
97.2 to 98.4
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0.35 to 0.6
Molybdenum (Mo), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.7 to 1.3
0 to 0.35
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants