MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. EN 1.8891 Steel

6082 aluminum belongs to the aluminum alloys classification, while EN 1.8891 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is EN 1.8891 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 95
180
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 18
19
Fatigue Strength, MPa 55 to 130
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 84 to 220
380
Tensile Strength: Ultimate (UTS), MPa 140 to 340
610
Tensile Strength: Yield (Proof), MPa 85 to 320
480

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
46
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.7
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
110
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 35
22
Strength to Weight: Bending, points 21 to 40
20
Thermal Diffusivity, mm2/s 67
12
Thermal Shock Resistance, points 6.0 to 15
18

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.25
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.7
Iron (Fe), % 0 to 0.5
95.2 to 99
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
1.0 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.7 to 1.3
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0 to 0.030
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0