MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. CC380H Copper-nickel

6082 aluminum belongs to the aluminum alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 95
80
Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 6.3 to 18
26
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
47
Tensile Strength: Ultimate (UTS), MPa 140 to 340
310
Tensile Strength: Yield (Proof), MPa 85 to 320
120

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 650
1130
Melting Onset (Solidus), °C 580
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
46
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
65
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
59
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 14 to 35
9.8
Strength to Weight: Bending, points 21 to 40
12
Thermal Diffusivity, mm2/s 67
13
Thermal Shock Resistance, points 6.0 to 15
11

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0 to 0.010
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
84.5 to 89
Iron (Fe), % 0 to 0.5
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
1.0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Silicon (Si), % 0.7 to 1.3
0 to 0.1
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0 to 0.15
0