MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. SAE-AISI 1012 Steel

6082 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1012 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is SAE-AISI 1012 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 95
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 6.3 to 18
21 to 31
Fatigue Strength, MPa 55 to 130
150 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 84 to 220
230 to 250
Tensile Strength: Ultimate (UTS), MPa 140 to 340
360 to 400
Tensile Strength: Yield (Proof), MPa 85 to 320
200 to 330

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
53
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1170
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
80 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
110 to 300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 35
13 to 14
Strength to Weight: Bending, points 21 to 40
14 to 15
Thermal Diffusivity, mm2/s 67
14
Thermal Shock Resistance, points 6.0 to 15
11 to 13

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
99.16 to 99.6
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.3
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0