MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. C52400 Bronze

6082 aluminum belongs to the aluminum alloys classification, while C52400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 140 to 340
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
1000
Melting Onset (Solidus), °C 580
840
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 160
50
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1170
390

Common Calculations

Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 14 to 35
14 to 28
Strength to Weight: Bending, points 21 to 40
15 to 23
Thermal Diffusivity, mm2/s 67
15
Thermal Shock Resistance, points 6.0 to 15
17 to 32

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
87.8 to 91
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0.7 to 1.3
0
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Residuals, % 0
0 to 0.5