MakeItFrom.com
Menu (ESC)

6082 Aluminum vs. C82000 Copper

6082 aluminum belongs to the aluminum alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6082 aluminum and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 6.3 to 18
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 140 to 340
350 to 690
Tensile Strength: Yield (Proof), MPa 85 to 320
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 650
1090
Melting Onset (Solidus), °C 580
970
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
260
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
45
Electrical Conductivity: Equal Weight (Specific), % IACS 140
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
5.0
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 1170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 43
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 52 to 710
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 14 to 35
11 to 22
Strength to Weight: Bending, points 21 to 40
12 to 20
Thermal Diffusivity, mm2/s 67
76
Thermal Shock Resistance, points 6.0 to 15
12 to 24

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0 to 0.25
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 0.1
95.2 to 97.4
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.7 to 1.3
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.5