MakeItFrom.com
Menu (ESC)

6082-T6511 Aluminum vs. 7022-T6511 Aluminum

Both 6082-T6511 aluminum and 7022-T6511 aluminum are aluminum alloys. Both are furnished in the T6511 temper. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6082-T6511 aluminum and the bottom bar is 7022-T6511 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 13
7.8
Fatigue Strength, MPa 95
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 220
310
Tensile Strength: Ultimate (UTS), MPa 340
530
Tensile Strength: Yield (Proof), MPa 320
460

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 580
480
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 160
140
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
21
Electrical Conductivity: Equal Weight (Specific), % IACS 140
65

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
39
Resilience: Unit (Modulus of Resilience), kJ/m3 710
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 35
50
Strength to Weight: Bending, points 40
49
Thermal Diffusivity, mm2/s 67
54
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 95.2 to 98.3
87.9 to 92.4
Chromium (Cr), % 0 to 0.25
0.1 to 0.3
Copper (Cu), % 0 to 0.1
0.5 to 1.0
Iron (Fe), % 0 to 0.5
0 to 0.5
Magnesium (Mg), % 0.6 to 1.2
2.6 to 3.7
Manganese (Mn), % 0.4 to 1.0
0.1 to 0.4
Silicon (Si), % 0.7 to 1.3
0 to 0.5
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.2
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15