60Cr-40Ni Alloy vs. ASTM A227 Spring Steel
60Cr-40Ni alloy belongs to the otherwise unclassified metals classification, while ASTM A227 spring steel belongs to the iron alloys. There are 18 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.
For each property being compared, the top bar is 60Cr-40Ni alloy and the bottom bar is ASTM A227 spring steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 220 | |
190 |
Poisson's Ratio | 0.25 | |
0.29 |
Shear Modulus, GPa | 87 | |
72 |
Tensile Strength: Ultimate (UTS), MPa | 870 | |
1720 to 2220 |
Tensile Strength: Yield (Proof), MPa | 660 | |
1430 to 1850 |
Thermal Properties
Latent Heat of Fusion, J/g | 370 | |
250 |
Specific Heat Capacity, J/kg-K | 490 | |
470 |
Thermal Expansion, µm/m-K | 16 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 49 | |
1.8 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 7.4 | |
1.4 |
Embodied Energy, MJ/kg | 110 | |
19 |
Embodied Water, L/kg | 380 | |
46 |
Common Calculations
Stiffness to Weight: Axial, points | 16 | |
13 |
Stiffness to Weight: Bending, points | 26 | |
24 |
Strength to Weight: Axial, points | 31 | |
61 to 79 |
Strength to Weight: Bending, points | 26 | |
41 to 48 |
Thermal Shock Resistance, points | 18 | |
55 to 71 |
Alloy Composition
Aluminum (Al), % | 0 to 0.25 | |
0 |
Carbon (C), % | 0 to 0.1 | |
0.45 to 0.85 |
Chromium (Cr), % | 58 to 62 | |
0 |
Iron (Fe), % | 0 to 1.0 | |
97.4 to 99.1 |
Manganese (Mn), % | 0 to 0.3 | |
0.3 to 1.3 |
Nickel (Ni), % | 34.5 to 42 | |
0 |
Nitrogen (N), % | 0 to 0.3 | |
0 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0.15 to 0.35 |
Sulfur (S), % | 0 to 0.020 | |
0 to 0.050 |
Titanium (Ti), % | 0 to 0.5 | |
0 |