MakeItFrom.com
Menu (ESC)

60Cr-40Ni Alloy vs. AWS E320

60Cr-40Ni alloy belongs to the otherwise unclassified metals classification, while AWS E320 belongs to the iron alloys. They have 55% of their average alloy composition in common. There are 17 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is 60Cr-40Ni alloy and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Poisson's Ratio 0.25
0.28
Shear Modulus, GPa 87
77
Tensile Strength: Ultimate (UTS), MPa 870
620

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Specific Heat Capacity, J/kg-K 490
460
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 49
38
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 7.4
6.5
Embodied Energy, MJ/kg 110
91
Embodied Water, L/kg 380
220

Common Calculations

Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 26
20
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 58 to 62
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 0 to 1.0
31.8 to 43.5
Manganese (Mn), % 0 to 0.3
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 34.5 to 42
32 to 36
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.5
0